Stochastic Methods for Beam Weight Optimization for Large Antenna Arrays

dc.contributor.authorSelvaraj Tivesten, Matilda
dc.contributor.authorÖdesjö, Johan
dc.contributor.departmentChalmers tekniska högskola / Institutionen för matematiska vetenskapersv
dc.contributor.examinerJörnsten, Rebecka
dc.contributor.supervisorRoev, Artem
dc.date.accessioned2025-08-06T11:10:08Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractTraditional methods for beam weight optimization suffer from poor convergence and long run times for large antenna arrays and are limited to ideal antenna element models. To overcome these limitations, more efficient optimization algorithms are needed. Previous research has demonstrated that stochastic approaches such as genetic algorithms and particle swarm optimization are promising alternatives for solving this problem. This thesis investigates the tailoring of these stochastic optimization algorithms for beam weight optimization using high-dimensional, realistic, simulated data. We propose the use of an absolute radiation pattern scale as opposed to a relative one, which allows us to simplify the objective function and promote a more efficient energy usage. We decrease runtimes by restricting the optimization to a low-rank search space, implementing warm starts, and leveraging GPU acceleration. We find that these tailored methods show robust performance and converge significantly faster compared to current methods. The resulting beams also consistently outperform those currently in use. We demonstrate the effectiveness of our approach on antenna arrays of up to 1,152 subarrays, where antennas of 288 subarrays or more are considered large.
dc.identifier.coursecodeMVEX03
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310289
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectantenna arrays, beamforming, advanced antenna systems, stochastic optimization, genetic algorithms, particle swarm optimization.
dc.titleStochastic Methods for Beam Weight Optimization for Large Antenna Arrays
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeEngineering mathematics and computational science (MPENM), MSc
local.programmeData science and AI (MPDSC), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_Thesis_Matilda Selvaraj Tivesten Johan Ödesjö_2025.pdf
Storlek:
4.35 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: