Estimating Causal Effects with Interpretable Decision Trees

dc.contributor.authorAudinet De Pieuchon, Nicolas
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerDamaschke, Peter
dc.contributor.supervisorJohansson, Fredrik
dc.date.accessioned2024-01-10T12:29:25Z
dc.date.available2024-01-10T12:29:25Z
dc.date.issued2023
dc.date.submitted2023
dc.description.abstractIn this work we explore three methods for estimating treatment effects from observational data using interpretable decision trees: the outcome variance tree, the propensity tree and the linear dependence tree. Each tree attempts to split the covariate space into balanced partitions from which treatment effects can be inferred. The outcome variance tree focuses on reducing the variance in the outcome variable, and makes use of a sensitivity analysis based on the residual standard deviation in the outcome. The propensity tree attempts to build a tree that approximates a separate estimate of the propensity score whilst remaining interpretable. The linear dependence tree measures the linear dependence in the partitions and attempts to minimize it directly. The three methods are compared, along with other benchmark methods, on two data sets: a synthetic data set generated from a simple model and the more realistic semi-synthetic IHDP data set. Performance is evaluated by comparing interval widths and coverage for confidence and sensitivity intervals. A functionally-grounded evaluation of interpretability is given with tree size as proxies. The results show that the outcome variance tree and the linear dependence tree perform better than the benchmarks in terms of sensitivity intervals but worse in terms of confidence intervals. The propensity tree however did not perform as well as expected and requires more work to better understand its behavior.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/307503
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectdecision trees
dc.subjectcausality
dc.subjectinterpretability
dc.titleEstimating Causal Effects with Interpretable Decision Trees
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 23-142 NAP.pdf
Storlek:
1.08 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: