Anti-Money Laundering with Unreliable Labels

Publicerad

Typ

Examensarbete för masterexamen
Master's Thesis

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

This report examines the effectiveness of Graph Neural Networks (GNNs) in detecting money laundering activities using transaction data with unreliable labels. It explores how weakly supervised learning, specifically with GNNs, manages the challenges posed by missing and inaccurate labels in anti-money laundering (AML) systems. The study utilizes simulated transaction datasets to compare the performance of GNNs against traditional statistical models. Findings indicate that GNNs, due to their ability to process relational data structures, demonstrate superior adaptability and accuracy in scenarios with label deficiencies. This research provides effective strategies for enhancing anti-money laundering systems by employing GNNs to more effectively manage data challenges.

Beskrivning

Ämne/nyckelord

GNN, AML, money laundering, machine learning, deep learning, graph neural networks

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced