Camera-based Vital Sign Detection in Autonomous Vehicles using Deep Learning - A Benchmark Study

dc.contributor.authorKoutsakis, Dimitrios
dc.contributor.authorZelvyte, Salvija
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerHeyn, Hans-Martin
dc.contributor.supervisorBouraffa, Tayssir
dc.date.accessioned2025-07-02T12:07:12Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractThis study explores the feasibility of employing camera-based, deep learning algorithms for detecting vital signs in autonomous vehicles, with a focus on enhancing driver safety. By evaluating various remote photoplethysmography techniques in dynamic vehicular environments, challenges such as motion artifacts and varying lighting conditions were addressed. Findings suggest that machine learning models, particularly neural network based approaches, hold promise in accurately estimating heart rate and respiratory rate from video data in such settings. The study emphasizes the potential of deep learning methodologies to improve driver safety through the integration of non-invasive vital sign monitoring systems in autonomous vehicles. Future research should address dataset imbalances and broaden the benchmark scope to include additional vital signs and algorithms, while also exploring alternative methods such as optical-flow based approaches to enhance respiration rate detection.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309858
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectCamera-based
dc.subjectVital Sign Detection
dc.subjectAutonomous Vehicles
dc.subjectSoftware Engineering
dc.subjectBenchmark
dc.subjectRemote Photoplethysmography
dc.subjectDeep Learning
dc.subjectNeural Network
dc.subjectMachine Learning
dc.titleCamera-based Vital Sign Detection in Autonomous Vehicles using Deep Learning - A Benchmark Study
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeSoftware engineering and technology (MPSOF), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 24-26 SZ DK.pdf
Storlek:
7.49 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: