Comparison of Machine Learning Approaches Applied to Predicting Football Players Performance

dc.contributor.authorLindberg, Adrian
dc.contributor.authorSöderberg, David
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.examinerAbel, Andreas
dc.contributor.supervisorSeger, Carl-Johan
dc.contributor.supervisorYu, Yinan
dc.date.accessioned2020-09-21T08:00:25Z
dc.date.available2020-09-21T08:00:25Z
dc.date.issued2020sv
dc.date.submitted2020
dc.description.abstractThis thesis investigates three machine learning approaches: Support Vector Machine (SVM), Multi-Layer Perceptron (MLP) and Long Short-Term Memory (LSTM) on predicting the performance of an upcoming match for a football player in the English Premier League. Each approach is applied to two problems: regression and classification. The last four seasons of English Premier League is collected and analyzed. Each approach and problem is tested several times with different hyperparameters in order to find the best performance. We evaluate on five game weeks by picking a lineup for each model that is then measured by its collective score. The results indicate that regression outperforms classification, with LSTM being the best performing model. The score ends up outperforming the average of all managers during the evaluated period in the online football game, Fantasy Premier League. The findings could be used to assist in providing insight from historical data that might be too complex to find for humans.sv
dc.identifier.coursecodeDATX05sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/301745
dc.language.isoengsv
dc.setspec.uppsokTechnology
dc.subjectSVMsv
dc.subjectSVRsv
dc.subjectMLPsv
dc.subjectLSTMsv
dc.subjectPredicting Athletic Performancesv
dc.subjectComputer Sciencesv
dc.titleComparison of Machine Learning Approaches Applied to Predicting Football Players Performancesv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 20-98 Lindberg Söderberg.pdf
Storlek:
2.68 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.14 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: