Clustering Cancer Tumours using Unsupervised Deep Learning Techniques

Publicerad

Författare

Typ

Examensarbete för masterexamen
Master Thesis

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

The modern technology of DNA microarrays has made high-dimensional genomic data available for large-scale analysis. This thesis investigates how unsupervised deep learning techniques may be used as a class discovery method analysing cancer tumour data. Furthermore, the possibility of inferring which genes most strongly contribute in the differentiation of cancer types is discussed. Gene expression data from The Cancer Genome Atlas of 10 different cancer tumour types are analysed. A deep autoencoder network clearly separates cancer tumours as well as known subtypes of tumours already in 2-dimensions. The results are compared with other dimensionality reduction methods like principal component analysis.

Beskrivning

Ämne/nyckelord

Klinisk medicin, Grundläggande vetenskaper, Medicinska grundvetenskaper, Matematik, Fysik, Clinical Medicine, Basic Sciences, Basic Medicine, Mathematics, Physical Sciences

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced