Utilizing heterogeneity to allocate ML tasks for increased efficiency

dc.contributor.authorCarling, Lukas
dc.contributor.authorVilling, Max
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerPathan, Risat
dc.contributor.supervisorPetersen Moura Trancoso, Pedro
dc.date.accessioned2023-12-20T09:41:10Z
dc.date.available2023-12-20T09:41:10Z
dc.date.issued2023
dc.date.submitted2023
dc.description.abstractThere is a growing interest in using heterogeneous hardware and resource allocation to boost the efficiency of software applications. Proper use of both imposes additional burdens on software development. We look at characterizing some common machine learning tasks with regards to CPU-GPU systems, specifically for the NVIDIA Orin, in order to try and predict what conditions will give the highest performance and energy-efficiency. We then take an iterative approach for allocating said tasks to hardware and selecting resources based on our characterization, with either performance or energy-efficiency as a goal. We find that while there is room for improvement on per-task predictions there are various possibilities to gain significant benefits to performance and energy by properly utilizing hardware heterogeneity and resource allocation. Additional exploration of domain specific accelerators such as tensor cores shows significant potential for accelerating convolutions.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/307447
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectheterogeneous hardware
dc.subjectresource allocation
dc.subjectconvolutional neural network
dc.subjectNVIDIA
dc.subjectJetson ORIN
dc.subjecttensor cores
dc.subjectmachine learning
dc.titleUtilizing heterogeneity to allocate ML tasks for increased efficiency
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeHigh-performance computer systems (MPHPC), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 23-98 LC MV.pdf
Storlek:
1.92 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: