Formal Topology in Univalent Foundations

dc.contributor.authorTosun, Ayberk
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.examinerDanielsson, Nils Anders
dc.contributor.supervisorCoquand, Thierry
dc.date.accessioned2020-06-30T09:46:21Z
dc.date.available2020-06-30T09:46:21Z
dc.date.issued2020sv
dc.date.submitted2020
dc.description.abstractFormal topology is a mathematical discipline that aims to interpret topology in type-theoretical terms, that is, constructively and predicatively. Type theory has recently undergone a transformation [42] through insights arising from its association with homotopy theory, resulting in the formulation of the notion of a univalent type theory, and more broadly, a univalent foundation. We investigate, in this thesis, the natural continuation of the line of work on formal topology into univalent type theory. We first recapitulate our finding that a naive approach to formal topology in univalent type theory is problematic, and then present a solution to this problem that involves the use of higher inductive types. We hence sketch the beginnings of an approach towards developing formal topology in univalent type theory. As a proof of concept for this approach, we develop the formal topology of the Cantor space and construct a proof that it is compact. The development that we present has been carried out using the cubical extension of the Agda proof assistant [44]. No postulates have been used and the development typechecks with the --safe flag of Agda. The presentation in this thesis amounts to an informalisation of this formal development.sv
dc.identifier.coursecodeDATX60sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/301098
dc.language.isoengsv
dc.relation.ispartofseriesCSE 20-12sv
dc.setspec.uppsokTechnology
dc.subjecttopologysv
dc.subjectformal topologysv
dc.subjectpointless topologysv
dc.subjectformal spacesv
dc.subjectlocalesv
dc.subjectlocale theorysv
dc.subjectframesv
dc.subjecthomotopy type theorysv
dc.subjectunivalencesv
dc.subjectunivalence foundationssv
dc.subjectagdasv
dc.subjectcubical agdasv
dc.titleFormal Topology in Univalent Foundationssv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 20-12 Tosun.pdf
Storlek:
781.74 KB
Format:
Adobe Portable Document Format
Beskrivning:
CSE 20-12 Tosun
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.14 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: