Surface coating on cathode materials for environmental-friendly battery manufacturing

Publicerad

Typ

Examensarbete för masterexamen
Master's Thesis

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

An increasing need for sustainable energy has put lithium-ion battery in the forefront of the energy race. Traditional batteries cannot meet the energy demands of the future. Moreover, the use of toxic N-Methyl-2-pyrrolidone (NMP) solvent causes high energy consumption, high cost, and environmental concern of the current battery manufacturing process. In order to eliminate the use of NMP solvent during the electrode processing, here the aim of the project is to modify the surface of cathode material and make it favourable for the water-based electrode processing. Considering the stability issue of cathode in water, graphene, which is impermeable to water, was used as coating materials to protect the surface of cathode material. In addition, introducing graphene in the Li-ion battery improves the performance of the battery as it enhances the conductivity and increases the surface area. The graphene-coated cathode materials were characterized by Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA). The preliminary results demonstrated that the graphene coating could improve the cycling stability and increase the capacity of the lithium-ion battery.

Beskrivning

Ämne/nyckelord

Graphene, Li-ion Battery, APTES coating, LFP, NMC111, NMC811

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced