Energy Management in Grid-Connected Photovoltaic Battery Systems Using Degradation-Aware Model Predictive Control-Based Reinforcement Learning

dc.contributor.authorHägeryd, Ida
dc.contributor.authorSever, Stjepana
dc.contributor.departmentChalmers tekniska högskola / Institutionen för elektrotekniksv
dc.contributor.examinerWik, Torsten
dc.contributor.supervisorZhang, Huang
dc.contributor.supervisorWikner, Evelina
dc.date.accessioned2025-10-28T12:36:12Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractThis thesis presents a degradation-aware Model Predictive Control–based Reinforcement Learning (MPC-RL) framework for optimal energy management in residential grid-connected photovoltaic (PV) battery systems. The goal is to minimize total operating costs while accounting for battery degradation, grid price variability, and forecast uncertainty. The MPC formulation incorporates a parametrized stage cost that includes grid energy costs, battery degradation, and state-of-charge (SoC) penalty window, with parameters tuned using a Q-learning algorithm. Gaussian Process Regression (GPR) is used to forecast the net residual power (PV production minus demand) based on temporal and historical features, enabling a realistic simulation environment and improved MPC decision-making. The proposed method is benchmarked against a baseline non-parametrized MPC controller, purely RL-based strategies from literature, and a simple Gaussian residual model. Results show that while the proposed MPC-RL approach does not outperform all RL benchmarks in short-term simulations, it achieves competitive performance with reduced degradation and improved constraint handling. GPR-based residual forecasts outperform the Gaussian baseline, reducing total monthly costs by up to 2.2 % compared to the random-sampling approach, and closely tracking actual residual trends. These findings suggest that MPC-RL with GPR prediction offers a promising and degradationconscious approach for residential microgrid energy management.
dc.identifier.coursecodeEENX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310678
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectEconomic Model Predictive Control
dc.subjectReinforcement Learning
dc.subjectPhotovoltaic
dc.subjectBattery Degradation
dc.titleEnergy Management in Grid-Connected Photovoltaic Battery Systems Using Degradation-Aware Model Predictive Control-Based Reinforcement Learning
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeSystems, control and mechatronics (MPSYS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_thesis_final.pdf
Storlek:
2.4 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: