MTL vs STL: NIR Video metadata classification using self-supervised semi-supervised learning

dc.contributor.authorFåhraeus, Gustav
dc.contributor.authorThörnblom, Adam
dc.contributor.departmentChalmers tekniska högskola / Institutionen för elektrotekniksv
dc.contributor.examinerHammarstrand, Lars
dc.date.accessioned2023-06-22T11:36:04Z
dc.date.available2023-06-22T11:36:04Z
dc.date.issued2023
dc.date.submitted2023
dc.description.abstractAbstract The combination of self-supervision and semi-supervision has emerged as a popular research topic in recent years. However, existing studies primarily focus on single-task models trained on datasets where individual images are labeled with a single class, overlooking the challenges associated with multi-class scenarios. In this thesis, we propose a modified S4L framework, which is a self-supervised semi supervised learning framework specifically designed to handle partially labeled data. The modified S4L framework addresses some limitations of previous approaches and demonstrates its effectiveness in both multi-task learning and single-task learning settings. The research focuses on the classification of visual attributes in human subjects, specifically in near-infrared (NIR) images.
dc.identifier.coursecodeEENX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/306377
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.titleMTL vs STL: NIR Video metadata classification using self-supervised semi-supervised learning
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeData science and AI (MPDSC), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Adam_Gustav_MasterThesis (2).pdf
Storlek:
9.28 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: