Federated Clustering of Electric Vehicle’s Usage Patterns for Personalized State-of-Health Estimation

dc.contributor.authorLundkvist, Axel
dc.contributor.departmentChalmers tekniska högskola / Institutionen för elektrotekniksv
dc.contributor.examinerZou, Changfu
dc.contributor.supervisorFleischer, Christian
dc.date.accessioned2025-08-11T15:04:04Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractBattery-health degradation varies significantly among electric vehicles, complicating accurate fleet-wide monitoring. This study investigates key factors influencing battery ageing and incorporates them into a dynamic clustered federated-learning framework, combining K-means initialization and Affinity Propagation (AP) clustering. Evaluated on NASA laboratory cells and telemetry from nine electric vehicles used in heterogeneous driving conditions, the approach achieves faster convergence and lower prediction errors compared to single trained models. Whereas clustering solely on ambient temperature profiles produced the best results, highlighting temperature as the clearest indicator for personalized state-of-health estimation. Adding more features led to overlapping clusters and reduced model performance. Despite room for improvement in the clustering algorithm and the limited dataset, the results demonstrate promising potential. Recommended future steps include implementing richer sequence models, automated outlier filtering, and validation in larger electric vehicles fleets to provide robust, privacy-preserving battery diagnostics in real-world scenarios.
dc.identifier.coursecodeEENX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310313
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectFederated Learning
dc.subjectClustering
dc.subjectElectric Vechiles
dc.subjectBattery Degradation Estimation
dc.titleFederated Clustering of Electric Vehicle’s Usage Patterns for Personalized State-of-Health Estimation
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_Thesis_Axel_Lundkvist.pdf
Storlek:
3.19 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: