Identification of Wi-Fi-enabled drones via software-defined radio (SDR) and artificial intelligence (AI)
| dc.contributor.author | Ghasemi, Sam | |
| dc.contributor.department | Chalmers tekniska högskola / Institutionen för mikroteknologi och nanovetenskap (MC2) | sv |
| dc.contributor.department | Chalmers University of Technology / Department of Microtechnology and Nanoscience (MC2) | en |
| dc.contributor.examiner | Habibpour, Omid | |
| dc.contributor.supervisor | Habibpour, Omid | |
| dc.date.accessioned | 2025-10-14T07:55:52Z | |
| dc.date.issued | 2025 | |
| dc.date.submitted | ||
| dc.description.abstract | This thesis presents a method for detecting Wi-Fi-controlled drones using software-defined radio (SDR) technology combined with artificial intelligence (AI). Radio frequency (RF) signals in the 2.4 GHz band were captured and analyzed to distinguish drone transmissions from conventional wireless activity. A rule-based bandwidth analysis was first implemented, followed by a convolutional neural network (CNN) classifier trained on power spectral density (PSD) features. The system successfully identified drone signals in real time under test conditions, demonstrating that SDR combined with AI provides a cost-effective and extensible framework for RF-based drone detection. | |
| dc.identifier.coursecode | MCCX05 | |
| dc.identifier.uri | http://hdl.handle.net/20.500.12380/310630 | |
| dc.language.iso | eng | |
| dc.setspec.uppsok | PhysicsChemistryMaths | |
| dc.title | Identification of Wi-Fi-enabled drones via software-defined radio (SDR) and artificial intelligence (AI) | |
| dc.type.degree | Examensarbete för masterexamen | sv |
| dc.type.degree | Master's Thesis | en |
| dc.type.uppsok | H | |
| local.programme | Övrigt, MSc |
Ladda ner
Original bundle
1 - 1 av 1
Hämtar...
- Namn:
- Identification of Wi-Fi-Enabled Drones via Software-Defined Radio (SDR) and Artificial Intelligence (AI).pdf
- Storlek:
- 4.41 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 av 1
Hämtar...
- Namn:
- license.txt
- Storlek:
- 2.35 KB
- Format:
- Item-specific license agreed upon to submission
- Beskrivning:
