Identification of Wi-Fi-enabled drones via software-defined radio (SDR) and artificial intelligence (AI)

dc.contributor.authorGhasemi, Sam
dc.contributor.departmentChalmers tekniska högskola / Institutionen för mikroteknologi och nanovetenskap (MC2)sv
dc.contributor.departmentChalmers University of Technology / Department of Microtechnology and Nanoscience (MC2)en
dc.contributor.examinerHabibpour, Omid
dc.contributor.supervisorHabibpour, Omid
dc.date.accessioned2025-10-14T07:55:52Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractThis thesis presents a method for detecting Wi-Fi-controlled drones using software-defined radio (SDR) technology combined with artificial intelligence (AI). Radio frequency (RF) signals in the 2.4 GHz band were captured and analyzed to distinguish drone transmissions from conventional wireless activity. A rule-based bandwidth analysis was first implemented, followed by a convolutional neural network (CNN) classifier trained on power spectral density (PSD) features. The system successfully identified drone signals in real time under test conditions, demonstrating that SDR combined with AI provides a cost-effective and extensible framework for RF-based drone detection.
dc.identifier.coursecodeMCCX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310630
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.titleIdentification of Wi-Fi-enabled drones via software-defined radio (SDR) and artificial intelligence (AI)
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeÖvrigt, MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Identification of Wi-Fi-Enabled Drones via Software-Defined Radio (SDR) and Artificial Intelligence (AI).pdf
Storlek:
4.41 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: