Learning Neural SDEs for Bayesian Filtering and Smoothing

dc.contributor.authorBirath Blom, Gustav
dc.contributor.authorNilsson, Isak
dc.contributor.departmentChalmers tekniska högskola / Institutionen för matematiska vetenskapersv
dc.contributor.examinerSchauer, Moritz
dc.contributor.supervisorAronsson, Jimmy
dc.contributor.supervisorHammar, Karl
dc.contributor.supervisorSvedung Wettervik, Benjamin
dc.date.accessioned2025-06-23T11:08:24Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractThis thesis investigates neural stochastic differential equations (neural SDEs) trained within a Wasserstein Generative Adversarial Network (WGAN) framework to approximate conditional probability distributions of trajectories, with applications in radar-based tracking. The study focuses on how different loss functions impact model performance for smoothing (estimating past states) and filtering (estimating current state) from noisy observations. Experiments in one- and two-dimensions show that neural SDEs effectively capture complex nonlinear dynamics and uncertainty relevant to radar tracking. Future research directions include extending the state space with additional physical quantities, incorporating Lévy jump processes, and refining loss functions for better accuracy around observations. In general, the study demonstrates the feasibility and versatility of WGAN-trained neural SDEs for Bayesian filtering and smoothing.
dc.identifier.coursecodeMVEX03
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309599
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectNeural SDEs, Wasserstein GAN, Adversarial Training, Bayesian Inference, Path Signatures, Particle Filtering, Doob’s h-Transform, Girsanov’s Theorem, Filtering, Smoothing, Generative Models, Stochastic Processes.
dc.titleLearning Neural SDEs for Bayesian Filtering and Smoothing
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeEngineering mathematics and computational science (MPENM), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_Thesis_Gustav Birath Blom Isak Nilsson_2025.pdf
Storlek:
24.71 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: