Creating a digital clone of a process plant using neural networks: Study case of an integrated gasification combined cycle plant

dc.contributor.authorForero Franco, Renesteban
dc.contributor.departmentChalmers tekniska högskola / Institutionen för rymd-, geo- och miljövetenskapsv
dc.contributor.examinerNormann, Fredrik
dc.contributor.supervisorNormann, Fredrik
dc.date.accessioned2020-06-18T13:31:16Z
dc.date.available2020-06-18T13:31:16Z
dc.date.issued2020sv
dc.date.submitted2019
dc.description.abstractProcess industry is challenged by complex and highly non-linear systems that requires the use of first principles modelling tools to predict their behavior in relation to certain input conditions. Such modelling tools struggle with convergence issues, local optima traps, and other calculation problems, making any optimization and forecasting estimation process time consuming. This work investigates the efficiency of a Deep Neural Network (DNN) surrogate model in relation to a first principle model. The DNN simulates an Integrated Gasification Combined Cycle plant (IGCC) and compares accuracy and time efficiency in relation to the original Aspen Plus® model. A hyperparameters tuning process is followed to find the optimal network architecture and minimum number of samples that are needed to describe the simulated system. The developed Neural Network model is about 3 orders of magnitude more time efficient in calculations with an accuracy comparable to the Aspen model. Therefore, the Deep Neural Networks is concluded a promising tool for real plant operation in the cost-optimal decision-making process.sv
dc.identifier.coursecodeSEEX30sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/300909
dc.language.isoengsv
dc.setspec.uppsokLifeEarthScience
dc.titleCreating a digital clone of a process plant using neural networks: Study case of an integrated gasification combined cycle plantsv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH
local.programmeSustainable energy systems (MPSES), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Report Thesis_Deep Neural Networks in Process Plants_Renesteban Forero Franco.pdf
Storlek:
5.22 MB
Format:
Adobe Portable Document Format
Beskrivning:

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.14 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: