Prediction of Liver Toxicity using Machine Learning to aid Drug Discovery

dc.contributor.authorBrunnsåker, Daniel
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.examinerKemp, Graham
dc.contributor.supervisorSchliep, Alexander
dc.date.accessioned2020-12-08T09:23:57Z
dc.date.available2020-12-08T09:23:57Z
dc.date.issued2020sv
dc.date.submitted2020
dc.description.abstractThis thesis proposes a method for predicting drug incuded liver injury using transcriptomic data from the toxicogenomical databases TG-GATEs (Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System) and DrugMatrix with the help of various machine learning algorithms. The possibility of using the toxicological database CMap in cooperation with the NCI60 human tumor cell lines screen to make prediction models for in vitro cytotoxicity using the same methodology was also investigated. It was found that transcriptomic data can indeed be used to predict liver injury in rat with very high accuracy. The in silico models developed in this project also outperform similar existing solutions on completely external testing sets, generating models successfully predicting four different injuries in the context of liver: necrosis, fibrosis, hyperplasia and mitotic alterations. In vitro cytotoxicity was also predicted by the models with relatively high accuracy, more specifically on the cancer cell line A-549. The model was also evaluated on primary human hepatocytes exposed to hepatotoxic agents, finding dose-response relationships. Additional learnings included the importance of selecting appropriate featuresets when predicting specific adverse effects and also the applicability of synthetic oversampling techniques in collaboration with transfer-learning when used on transcriptomic data.sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/302109
dc.language.isoengsv
dc.setspec.uppsokTechnology
dc.subjectComputersv
dc.subjectsciencesv
dc.subjectcomputer sciencesv
dc.subjectengineeringsv
dc.subjectthesissv
dc.subjectdata sciencesv
dc.subjectdilisv
dc.subjectdeep learningsv
dc.subjectmachine learningsv
dc.subjectcytotoxicitysv
dc.subjectconnectivity mapsv
dc.subjecttg-gatessv
dc.subjectdrugmatrixsv
dc.subjectnci60sv
dc.subjectbiotechnologysv
dc.subjecttranscriptomicssv
dc.subjectbioinformaticssv
dc.titlePrediction of Liver Toxicity using Machine Learning to aid Drug Discoverysv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 20-09 BRUNNSÅKER ODR.pdf
Storlek:
7.87 MB
Format:
Adobe Portable Document Format
Beskrivning:

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.14 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: