Cut-in Detection from Videos

dc.contributor.authorUdayakumar, Apoorva
dc.contributor.authorVarma, Aditya Padmanabhan
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerDamaschke, Peter
dc.contributor.supervisorPanahi, Ashkan
dc.date.accessioned2024-01-10T12:51:06Z
dc.date.available2024-01-10T12:51:06Z
dc.date.issued2023
dc.date.submitted2023
dc.description.abstractFor autonomous driving, it is crucial to anticipate the behaviour of other road users and act accordingly. One important scenario is when a vehicle cuts into the lane of the ego-vehicle with or without sufficient indicator cue. This thesis studies such a scenario and investigates the application of deep learning techniques for understanding and predicting when the cut-in maneuver is performed by the vehicles ahead. As a first step, indicator cues from videos of vehicles performing cut-ins are detected successfully with an F1 score of of 83% and recall value of 85%. We achieve this result by employing ResNet-18 and CNN-LSTM with a tuned level of context around the target vehicle. Further we predict the estimates of interest such as start and end of cut-in intention using the same architectures and discuss the challenges.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/307504
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectcut-in
dc.subjectZenseact
dc.subjectautonomous driving
dc.subjectindicator
dc.subjectintent prediction
dc.titleCut-in Detection from Videos
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeData science and AI (MPDSC), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 23-143 AU APV.pdf
Storlek:
4.11 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: