Space-Filling Curve-Based Traffic Event Detection Using Deep Learning and Optical Flow - A Conceptual Framework for Efficient Traffic Event Detection in Vehicle-Mounted Video Data

dc.contributor.authorWessman, Erik
dc.contributor.authorKjellberg Carlson, Elias
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerHeyn, Hans-Martin
dc.contributor.supervisorBouraffa, Tayssir
dc.contributor.supervisorNouri, Ali
dc.date.accessioned2025-01-03T13:02:08Z
dc.date.available2025-01-03T13:02:08Z
dc.date.issued2024
dc.date.submitted
dc.description.abstractIdentifying and analyzing traffic events in large-scale, unstructured video data from vehicle-mounted cameras is a significant challenge for enhancing advanced driver assistance systems (ADAS). This thesis presents a conceptual framework that leverages machine learning (ML) and optical flow (OF) for efficient traffic event detection, utilizing space-filling curves (SFCs) to reduce data dimensionality. Our first approach, ML-SFC, uses an ML model predicting human attention to identify events, while the second, OF-SFC, employs an OF algorithm to detect movement. Both methods are evaluated using the synthetic SMIRK dataset and validated on the real-world Zenseact Open Dataset (ZOD). The results show that OF-SFC performs better on the synthetic dataset, while ML-SFC is better on the real-world dataset. Both methods achieve comparable processing speeds, indicating their suitability for real-time applications. This framework could serve as a foundation for scalable solutions to analyze large volumes of unstructured data in the form of traffic event detection or other contexts. The source code for our framework is available here: https://github.com/erikwessman/ted-sfc.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309047
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectComputer science
dc.subjectsoftware engineering
dc.subjectvehicle safety
dc.subjectneural networks
dc.subjectoptical flow
dc.subjectspace-filling curves
dc.subjectvehicle event detection
dc.titleSpace-Filling Curve-Based Traffic Event Detection Using Deep Learning and Optical Flow - A Conceptual Framework for Efficient Traffic Event Detection in Vehicle-Mounted Video Data
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeSoftware engineering and technology (MPSOF), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 24-35 EW EKC.pdf
Storlek:
9.37 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: