Chinese Semantic Role Labeling Using Recurrent Neural Networks

dc.contributor.authorZhang, Yigeng
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data- och informationsteknik (Chalmers)sv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineering (Chalmers)en
dc.date.accessioned2019-07-03T14:42:08Z
dc.date.available2019-07-03T14:42:08Z
dc.date.issued2017
dc.description.abstractIn the research field of natural language processing (NLP), semantic role labeling (SRL) is one of the essential problems. The task of SRL is to automatically find the semantic roles (such as AGENT and PATIENT) of each argument corresponding to each predicate in a sentence. Semantic roles are useful shallow semantic representations, and SRL is an important intermediate step for many NLP applications, such as Information Extraction, Question Answering and Machine Translation. Traditional methods for SRL are based on parsing output, and require much feature engineering. In this work, we implement an end-to-end system using deep bi-directional long-short term memory (LSTM) model to solve Chinese SRL problems. Its input is raw text which is segmented into characters as input features, and does not require any intermediate step of syntactic analysis. In this work, our method achieved a performance that almost approaches the level of a top-scoring system, but with a simpler process and a higher efficiency.
dc.identifier.urihttps://hdl.handle.net/20.500.12380/254899
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectData- och informationsvetenskap
dc.subjectComputer and Information Science
dc.titleChinese Semantic Role Labeling Using Recurrent Neural Networks
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster Thesisen
dc.type.uppsokH
local.programmeComputer systems and networks (MPCSN), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
254899.pdf
Storlek:
1.21 MB
Format:
Adobe Portable Document Format
Beskrivning:
Fulltext