Stochastic MPC for Autonomous Vehicles in Uncertain Situations

dc.contributor.authorZhang, Qun
dc.contributor.authorSalih, Saeed Ponnarikkal
dc.contributor.departmentChalmers tekniska högskola / Institutionen för elektrotekniksv
dc.contributor.examinerMurgovski, Nikolce
dc.contributor.supervisorBörve, Erik
dc.contributor.supervisorLaine, Leo
dc.date.accessioned2024-07-02T07:33:20Z
dc.date.available2024-07-02T07:33:20Z
dc.date.issued2024
dc.date.submitted
dc.description.abstractAbstract In this thesis, an Model Predictive Control (MPC) based trajectory planning algorithm is first introduced for controlling trucks on highways. Given the uncertainties that exist between theoretical models and real vehicles, this study further analyzes these uncertainties and proposes an Stochastic Model Predictive Control (SMPC) based trajectory planning algorithm. The algorithm avoids collisions by tightening constraints and is validated in the CARLA simulation environment. Experimental results show that the SMPC-based trajectory planning algorithm has obvious advantages in terms of safety performance compared with the standard MPC. However, the method also sacrifices certain driving performance and increases computational complexity, which is mainly due to the tightened traffic constraints. This study not only verifies the effectiveness of SMPC in handling uncertainty and enhancing safety but also provides both an experimental and theoretical basis for future work.
dc.identifier.coursecodeEENX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/308193
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectKeywords: Model Predictive Control, Stochastic Model Predictive Control, Collision Avoidance, CARLA Simulation, Optimal Control, Chance Constraints
dc.titleStochastic MPC for Autonomous Vehicles in Uncertain Situations
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeSystems, control and mechatronics (MPSYS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_Thesis_Final_Report_corrected.pdf
Storlek:
14.43 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: