Training Binary Deep Neural Networks Using Knowledge Distillation

dc.contributor.authorLundborg, Sofia
dc.contributor.departmentChalmers tekniska högskola / Institutionen för fysiksv
dc.contributor.examinerVolpe, Giovanni
dc.contributor.supervisorVolpe, Giovanni
dc.date.accessioned2020-07-02T12:14:14Z
dc.date.available2020-07-02T12:14:14Z
dc.date.issued2020sv
dc.date.submitted2020
dc.description.abstractBinary networks can be used to speed up inference time and make image analysis possible on less powerful devices. When binarizing a network the accuracy drops. The thesis aimed to investigate how the accuracy of a binary network can be improved by using knowledge distillation. Three different knowledge distillation methods were tested for various network types. Additionally, different architectures of a residual block in ResNet were suggested and tested. Test on CIFAR10 showed an 1.5% increase in accuracy when using knowledge distillation and an increase of 1.1% when testing on ImageNet dataset. The results indicate that the suggested knowledge distillation method can improve the accuracy of a binary network. Further testing needs to be done to verify the results, especially longer training. However, there is great potential that knowledge distillation can be used to boost the accuracy of binary networks.sv
dc.identifier.coursecodeTIFX05sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/301202
dc.language.isoengsv
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectdeep neural networkssv
dc.subjectknowledge distillationsv
dc.subjectbinary neural networkssv
dc.titleTraining Binary Deep Neural Networks Using Knowledge Distillationsv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_Thesis_Sofia_Lundborg.pdf
Storlek:
1.92 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.14 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: