Abandoned Object Detection in Vehicle Cabin Environment

dc.contributor.authorHu, Hao
dc.contributor.authorCheng, Yuhua
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerPetersen Moura Trancoso, Pedro
dc.contributor.supervisorPetersen Moura Trancoso, Pedro
dc.date.accessioned2024-09-24T05:40:04Z
dc.date.available2024-09-24T05:40:04Z
dc.date.issued2024
dc.date.submitted
dc.description.abstractAbandoned object detection in the vehicle cabin environment is pivotal for the convenience of passengers. Existing methods for abandoned object detection are either aimed at outdoor surveillance or rely too much on training data. This study aims to develop an efficient algorithm for detecting abandoned objects in a vehicle cabin environment that relies less on training data and generalizes to untrained objects. The main approach involves utilizing a simple background model to extract candidate abandoned objects, followed by feature extraction using MobileNetV2 pre-trained on ImageNet-k for accurate detection. By comparing features before and after human presence, false positive proposals are effectively filtered out. To make the proposed method suitable for embedded execution, optimizations are performed to improve efficiency. We evaluate the proposed method on common left-behind objects videos with a Jetson Nano device. The results prove the efficacy and efficiency of the proposed method. However, the study is still limited by the lack of research on dynamic cameras, low-contrast infrared images, and persistent shadows.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/308792
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectAbandoned object detection
dc.subjectVehicle cabin monitoring
dc.subjectBackground model
dc.subjectFeature extraction
dc.subjectComputer Vision
dc.subjectEmbedded ML
dc.titleAbandoned Object Detection in Vehicle Cabin Environment
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComputer science – algorithms, languages and logic (MPALG), MSc
local.programmeHigh-performance computer systems (MPHPC), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 24-95 HH YC.pdf
Storlek:
6.82 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: