Quantum computing & quantum information
Publicerad
Typ
Examensarbete för kandidatexamen
Bachelor Thesis
Bachelor Thesis
Program
Modellbyggare
Tidskriftstitel
ISSN
Volymtitel
Utgivare
Sammanfattning
This report is an introduction to quantum computation and quantum information. We present a two-part theory section followed by data analysis of a transmon qubit. The ¯rst theory part, needed for the analysis, introduces fundamental properties of qubit states and the Bloch sphere description. The qubit manipulation, interaction with a electromagnetic ¯eld, is then studied in the Rabi model (semi-classical) and the Jaynes-Cummings model (fully quantized). The second theory part is a qualitative presentation of the density matrix representation, decoherence (e®ects of noise) and read-out, which are useful topics in more advanced analysis. We also present a summary of qubit realizations, with focus on the superconduct- ing qubits: charge, phase and transmon. In the last part of the report, we analyze spectroscopic measurements on a trans- mon qubit in a cavity resonator, performed atMC2 Chalmers. The data was compared to the expected behavior from the Jaynes-Cummings Hamiltonian and then the full Hamiltonian for the transmon. The comparison enabled us to extract the parame- ters of the transmon. The ratio of the Josephson energy and the charge energy was determined to be EJ=EC = 34:5644 § 0:9456 GHz, which is in the transmon regime. Furthermore, the coupling strength between the cavity resonator and the qubit was determined to be 2¯eV 0 rms = 0:1301 § 0:00095 GHz, with a 68% con¯dence interval.
Beskrivning
Ämne/nyckelord
Mesoskopisk fysik, Mesoscopic physics