Debloating Machine Learning Systems

dc.contributor.authorSildnik, Mihkel
dc.contributor.authorWang, Yan
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.examinerCrnkovic, Ivica
dc.contributor.supervisorAli-Eldin Hassan, Ahmed
dc.contributor.supervisorLeitner, Philipp
dc.date.accessioned2021-06-29T08:05:06Z
dc.date.available2021-06-29T08:05:06Z
dc.date.issued2021sv
dc.date.submitted2020
dc.description.abstractThe size and complexity of software systems tend to grow over time. As a side-effect, this increase can potentially lead to the accumulation of unused code, also known as bloat. In this study, we assess the prevalence of bloat in Machine Learning (ML) systems, give an overview of a selection of existing debloating tools and study their applicability to workloads in this field. In order to assess the tools, we run a number of experiments on five different ML models, that are written using the PyTorch li brary. The debloating target is a Docker image containing the ML library and other dependancies required besides the model itself and the dataset. Cimplifier is the only tool we test that was able to generate working images. While the literature in the field of debloating suggests a possible reduction in metrics such as memory usage or power consumption, our testing only shows a reduction in storage size. Most of the removed files are parts of the Nvidia CUDA toolkit and the Intel Math Kernel Library. To summarize, Cimplifier gives promising results when it comes to storage reductions (around 50%) but is unable to impact other metrics such as GPU usage, power consumption or workload runtime.sv
dc.identifier.coursecodeMPALGsv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/302760
dc.language.isoengsv
dc.setspec.uppsokTechnology
dc.subjectComputersv
dc.subjectsciencesv
dc.subjectcomputer sciencesv
dc.subjectmachine learningsv
dc.subjectbloatsv
dc.subjectdebloatingsv
dc.subjectprojectsv
dc.subjectthesissv
dc.titleDebloating Machine Learning Systemssv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 21-81 Sildnik Wang.pdf
Storlek:
2.37 MB
Format:
Adobe Portable Document Format
Beskrivning:

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.51 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: