An HDL-parameterizable m x n systolicarray- based matrixmultiplier for DNN applications

dc.contributor.authorTayyem, Ibrahim
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerLarsson-Edefors, Per
dc.contributor.supervisorPetersen Moura Trancoso, Pedro
dc.contributor.supervisorVázquez Maceiras, Mateo
dc.date.accessioned2024-01-12T07:20:15Z
dc.date.available2024-01-12T07:20:15Z
dc.date.issued2023
dc.date.submitted2023
dc.description.abstractDeep Neural Networks (DNNs) and its applications have been employed in different platforms with different requirements and resource constrains. General Matrix Multiplication (GEMM) is a common way to compute convolution which represents the most computationally demanding operation in DNNs. The variation in convolutional layers’ shapes and sizes results in different GEMM parameters. In this work, two versions of a matrix multiplier are presented. Both accelerators are designed using VHDL-93, are parameterizable at the Hardware Description Language (HDL) level and capable of multiplying m x n matrices using non-squared Systolic Arrays (SAs). v1 is capable of multiplying matrices of the size and shape of the SA and leave multiplying larger matrices as software overhead by re-feeding tiles of the same size to the accelerator. v2 on the other hand is capable of multiplying matrices that are larger than the used SA improving performance by on-chip feedback. On the other hand, resource utilization, specifically BRAM utilization in v1 is less than that in v2 giving the same SA shape since there is no need to save all tiles’ parameters before the start of the execution. Thus available resources (higher DSP/MAC resources in v1 and higher BRAM in v2) make a specific version preferable to another to achieve the same acceleration.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/307514
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectMachine Learning
dc.subjectConvolutional Neural Network
dc.subjectreconfigurable
dc.subjectDomain Specific Architecture
dc.subjectSystolic Array
dc.subjectMatrix Multiplication
dc.titleAn HDL-parameterizable m x n systolicarray- based matrixmultiplier for DNN applications
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeEmbedded electronic system design (MPEES), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 23-150 IT.pdf
Storlek:
3.91 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: