Predicting Security of Browser Extensions Using Machine Learning

dc.contributor.authorSelmanovic, Alexander
dc.contributor.authorSöderlund, Camilla
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.examinerKarlsson, Johan
dc.contributor.supervisorSabelfeld, Andrei
dc.date.accessioned2022-09-20T10:08:50Z
dc.date.available2022-09-20T10:08:50Z
dc.date.issued2022sv
dc.date.submitted2020
dc.description.abstractCombining machine learning and cyber security can have great results in finding malicious web extensions and how those extensions exploit their users. In this thesis, a method for discovering extensions that are attacking their users with the help of Query Stealing attacks is proposed. With the help of machine learning, the suggested method is to build a model that with high accuracy predicts whether an extension is attacking its users or not based on static information found in both the manifest of the extensions and in the presence of predefined Keywords. The model is trained with previously gathered data that contains labels on extensions that categorise extensions as either malicious or safe. This data is suitable for a model taught using supervised machine learning. The final model achieves an F1 score of 0.9651, which indicates that the risk of an extension being misclassified is low. The model was then used to predict labels of new unlabelled extensions.sv
dc.identifier.coursecodeDATX05sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/305632
dc.language.isoengsv
dc.setspec.uppsokTechnology
dc.subjectMachine Learningsv
dc.subjectCyber Securitysv
dc.subjectBrowser Extensionsv
dc.subjectRandomsv
dc.subjectForest Classifiersv
dc.subjectRFCsv
dc.titlePredicting Security of Browser Extensions Using Machine Learningsv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 22-73 Selmanovic Söderlund.pdf
Storlek:
1.59 MB
Format:
Adobe Portable Document Format
Beskrivning:
Predicting Security of Browser Extensions Using Machine Learning

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.51 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: