Classifying Short Clinical Notes: An Unsupervised Approach

dc.contributor.authorCHEN TRIEU, Kevin
dc.contributor.authorNGUYEN, Long
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.examinerSeger, Carl-Johan
dc.contributor.supervisorRouces Gonzalez, Jacobo
dc.date.accessioned2020-11-03T13:10:08Z
dc.date.available2020-11-03T13:10:08Z
dc.date.issued2020sv
dc.date.submitted2020
dc.description.abstractA mandatory task in Sweden is the reporting of clinical procedures with a specially assigned code based on the procedure. It is both time-consuming and troublesome for medical personnel since more than 10,000 codes exist. By automating this task, it is possible to both save time of the personnel and money within the healthcare industry. This master thesis explores an alternative way of classifying short clinical notes through unsupervised methods when quality labelled data is not available. By combining advances within NLP, utilising word embeddings and incorporating additional knowledge into the data, a classifier which do not rely on labelled data is presented. Instead of learning by examples as supervised methods, the classifier manages to find semantic similarities between clinical notes and the description of the different codes, making it intuitively similar to how we humans would classify a code.sv
dc.identifier.coursecodeMPALGsv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/302033
dc.language.isoengsv
dc.setspec.uppsokTechnology
dc.subjectNatural language processingsv
dc.subjecttext classificationsv
dc.subjectunsupervised learningsv
dc.subjectword embeddingsv
dc.subjectshort textsv
dc.subjectself-supervisedsv
dc.subjectinformation-retrievalsv
dc.subjectclinical textsv
dc.titleClassifying Short Clinical Notes: An Unsupervised Approachsv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH
local.programmeComputer science – algorithms, languages and logic (MPALG), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 20-110 Chen Trieu Nguyen.pdf
Storlek:
2.15 MB
Format:
Adobe Portable Document Format
Beskrivning:

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.14 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: