Imaging system for detection, classification and quantification

Publicerad

Typ

Examensarbete för masterexamen
Master Thesis

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

This thesis was conducted at the Fraunhofer Chalmers Centre for Industrial Mathematics in collaboration with the Fraunhofer-Institut f¨ur Techno- und Wirtschaftsmathematik. The aim of this thesis is to develop an imaging system for the automated detection of holes in images of supermarket shelves. The proposed approach uses an unsupervised segmentation method to presegment the image into homogeneous regions. Each of those image regions is then classified separately using a support vector machine. Finally, suitable bounding boxes are found for image regions that are likely to represent holes. Apart from the SVM classifier also an AdaBoost classifier and a structural classifier based on conditional random fields are implemented and tested. This thesis describes the implementation and performance characteristics of the resulting imaging system, which is implemented using the ToolIP graphical image processing framework and C++.

Beskrivning

Ämne/nyckelord

Grundläggande vetenskaper, Matematik, Basic Sciences, Mathematics

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced