Exploratory machine learning strategies for predicting thermal conductivity of materials from transient plane source measurement

dc.contributor.authorLEE, BITNOORI
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerPetersen Moura Trancoso, Pedro
dc.contributor.supervisorCornelis Jacobus Bruinsma, Sebastianus
dc.date.accessioned2023-12-20T18:34:34Z
dc.date.available2023-12-20T18:34:34Z
dc.date.issued2023
dc.date.submitted2023
dc.description.abstractThis study introduces the application of machine learning to the Hot Disk Transient Plane Source (TPS) method, aimed at enhancing the precision and efficiency of thermal conductivity prediction. Comprising two distinct parts, Part I, the research addresses the prediction of thermal conductivity in low-density/high-insulation materials. Part II is the thermal conductivity measurement under high-temperature conditions with noise. Four prediction algorithms were systematically applied and assessed for accuracy to predict thermal conductivities. Experimental data obtained through the TPS method served as the basis for machine learning training data, augmented with simulated data to make up for insufficient data. The outcomes of this study provide a conclusive response to a critical research question: Can machine learning accurately predict thermal conductivity from transient curves? In Part I, machine learning consistently and accurately predicts thermal conductivity for low-density/high-insulation materials devoid of CL values, underscoring its complementary utility. In Part II, machine learning demonstrates its proficiency in accurately predicting thermal conductivity, even in noisy transient curves at extreme temperatures. However, challenges stemming from insufficient data issues and the absence of reference points introduce variability in accuracy.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/307461
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectMachine Learning
dc.subjectSupervised Learning
dc.subjectPredictive Modeling
dc.subjectTPS methods
dc.subjectThermal conductivity
dc.subjectFEM simulation
dc.titleExploratory machine learning strategies for predicting thermal conductivity of materials from transient plane source measurement
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeHigh-performance computer systems (MPHPC), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 23-125 BL.pdf
Storlek:
1.04 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: