Signal Detection with a Digital Antenna Array using Machine Learning

dc.contributor.authorOhlman, Elin
dc.contributor.departmentChalmers tekniska högskola / Institutionen för elektrotekniksv
dc.contributor.examinerMaaskant, Rob
dc.contributor.supervisorKarlsson, Alexander
dc.contributor.supervisorNorgren, Eric
dc.date.accessioned2024-05-27T13:09:54Z
dc.date.available2024-05-27T13:09:54Z
dc.date.issued2023
dc.date.submitted
dc.description.abstractRadars and radar warning receiver systems engage in a perpetual battle for superiority. This constant struggle demands the development of new methods, and recent advancements in machine learning and image recognition may serve as sources of inspiration. In this thesis, a “You Only Look Once”-style neural network is designed to detect pulsed radar signals and estimate their angle of arrival, frequency, time of arrival, and pulse width. Employing a digital multi-channel uniform linear antenna array, a short-time Fourier transform is applied to the output from each antenna element. Afterward, beamforming is performed for various angles combining the spectrograms, producing a 3D image upon which image recognition is applied. We find that using simulated data this method works for detecting two sinusoidal signals, even in noisy environments.
dc.identifier.coursecodeEENX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/307691
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectKeywords: Angle of Arrival (AOA), Beamforming, Convolutional Neural Network (CNN), Digital Antenna, Signal Detection, Spectrogram, Uniform Linear Array (ULA), You Only Look Once (YOLO)
dc.titleSignal Detection with a Digital Antenna Array using Machine Learning
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeHigh-performance computer systems (MPHPC), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Exjobb-1.pdf
Storlek:
2.73 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: