Cross-tissue variance analysis of gene sets

dc.contributor.authorThune , Oskar
dc.contributor.authorKööhler, Mauritz
dc.contributor.departmentChalmers tekniska högskola / Institutionen för matematiska vetenskapersv
dc.contributor.examinerKristiansson, Erik
dc.contributor.supervisorAngermann, Bastian
dc.date.accessioned2023-11-06T14:46:22Z
dc.date.available2023-11-06T14:46:22Z
dc.date.issued2023
dc.date.submitted2023
dc.description.abstractGene set enrichment is used to investigate the differences between gene expression for genetic pathways in transcriptomic data. Gene set scoring methods like GSVA and singscore are used in gene set enrichment analysis to assess the enrichment of genes of interest, called gene sets. GSVA and singscore produces a score of how expressed a gene set is in relationship with a reference expression, a reference that is not always accessible. In this work we apply variance decomposition to investigate the use of singscore and GSVA to create a baseline for RNA-seq data that lacks control samples and apply a VAE for prediction of gene set scores across tissues. To this end, variance decomposition was done on GTEx to assess the dataset’s use as a baseline, and a VAE was trained on GTEx with the aim of predicting gene set scores across tissues. Our results show that there is a limited use of using a reference dataset as a basis for RNA-seq data. The results are not conclusive enough to warrant usage in applications with the precision needed in pharmaceutical research. The VAE based prediction shows lacklustre results in predicting expression over tissues, and other machine learning methods should be investigated for this application.
dc.identifier.coursecodeMVEX03
dc.identifier.urihttp://hdl.handle.net/20.500.12380/307323
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectRNA-seq, GSVA, Transcriptomics, Bioinformatics, Variational autoencoder, GTEx, Variance decomposition
dc.titleCross-tissue variance analysis of gene sets
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc
local.programmeEngineering mathematics and computational science (MPENM), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_Thesis_Oskar_Thune_Mauritz_Kööhler_2023.pdf
Storlek:
4.38 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: