The Rise of Hydra-BERT - A Multiheaded Approach for Multiclass Event Extraction on a Single Language Model Body

dc.contributor.authorWeckner, Christian
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerJohansson, Richard
dc.contributor.supervisorHagström, Lovisa
dc.date.accessioned2025-01-08T12:10:47Z
dc.date.available2025-01-08T12:10:47Z
dc.date.issued2024
dc.date.submitted
dc.description.abstractEvery day, millions of pieces of text hit the internet. A fraction of these describe events which can be invaluable in the right context. Recorded Future uses a platoon of event extraction models, attempting to find information nuggets in a sea of digital noise. Each model is only trained on a specific event type, leaving a lot of potential data synergies unexplored. This thesis proposes an alternative model, trained on all event types. The model should be able to detect events and tag roles equal to or better than models dedicated to a specific event type. It should also be a continual learner, not deteriorating on old event types as new ones are added. The resulting model, called Hydra2, was trained on six different event types. It outperformed the baseline models in all event detection and role tagging tasks. Furthermore, the observed increase in performance also hints at hidden similarities among the event types utilized in these tasks. A smaller version, called Hydra2b, showed potential for continual learning, though further studies are required before declaring it a definite success.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309059
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectNLP
dc.subjectevent extraction
dc.subjectevent detection
dc.subjectrole tagging
dc.subjecthydra
dc.subjectcontinual learning
dc.titleThe Rise of Hydra-BERT - A Multiheaded Approach for Multiclass Event Extraction on a Single Language Model Body
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComputer science – algorithms, languages and logic (MPALG), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 24-54 CW.pdf
Storlek:
3.98 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: