TimePillars: Temporally-recurrent 3D LiDAR Object Detection

dc.contributor.authorLozano Calvo, Ernesto
dc.contributor.authorTaveira, Bernardo
dc.contributor.departmentChalmers tekniska högskola / Institutionen för elektrotekniksv
dc.contributor.examinerKahl, Fredrik
dc.date.accessioned2023-06-20T12:16:50Z
dc.date.available2023-06-20T12:16:50Z
dc.date.issued2023
dc.date.submitted2023
dc.description.abstractAbstract Object detection applied to LiDAR point clouds is a relevant task in robotics, and particularly in autonomous driving. Single frame methods, predominant in the field, exploit information from individual sensor scans. Recent approaches achieve good performance, at relatively low inference time. Nevertheless, given the inherent high sparsity of LiDAR data, these methods struggle in long-range detection (e.g. 200m) and lack of temporal continuity, ignoring past information. We deem these characteristics to be critical in achieving safe automation. Aggregating past data frames not only leads to a denser point cloud representation, but it also brings time-awareness to the system, and provides information about how the environment is changing. Solutions of this kind, however, are often highly problem-specific, demand careful data processing, and tend not to fulfil efficiency requirements. In this context we propose TimePillars, a temporally-recurrent object detection pipeline which leverages the pillar representation of LiDAR data across time, respecting hardware integration efficiency constraints, and exploiting the diversity and long-range information of the novel Zenseact Open Dataset (ZOD). By performing extensive experimentation, we prove the benefits of having a recurrent scheme, and show how basic building blocks are enough to achieve robust and efficient results.
dc.identifier.coursecodeEENX30
dc.identifier.urihttp://hdl.handle.net/20.500.12380/306328
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.titleTimePillars: Temporally-recurrent 3D LiDAR Object Detection
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeSystems, control and mechatronics (MPSYS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_Thesis_Report.pdf
Storlek:
4.18 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: