Deep Leakage in Federated Learning: Understanding Privacy Vulnerabilities

dc.contributor.authorCarl, Kronqvist
dc.contributor.authorMalte, Olsson
dc.contributor.departmentChalmers tekniska högskola / Institutionen för fysiksv
dc.contributor.departmentChalmers University of Technology / Department of Physicsen
dc.contributor.examinerGustafsson, Kristian
dc.contributor.supervisorWarston, Håkan
dc.date.accessioned2025-06-13T07:25:55Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractDeep Leakage attacks in Federated Learning have traditionally relied on FedSGD, yet real-world deployments commonly adopt FedAVG due to its reduced communi cation overhead. This study investigates the feasibility and limitations of executing DL attacks within a FedAVG setting. A custom FL framework was developed to support FedAVG and state-of-the-art DL techniques to operate on shared model weights instead of gradients. Experiments conducted using the CIFAR-10 dataset revealed that while DL attacks are possible under FedAVG, their success dimin ishes as local training (batch size and epochs) increases, due to degraded gradient approximations. Additionally, model initialization strategies, dataset size, and im age resolution significantly impact reconstruction quality. These findings highlight critical trade-offs between privacy and performance in FL systems, emphasizing the need for cautious design choices in real-world applications.
dc.identifier.coursecodeTIFX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309420
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectFederated Learning, FedAVG, Deep Leakage, Privacy Attack, Model Inversion, Gradient Approximation, Image Reconstruction, Robustness Analysis, Local Training, Data Leakage
dc.titleDeep Leakage in Federated Learning: Understanding Privacy Vulnerabilities
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_s_Thesis_Report_Final_version.pdf
Storlek:
1.99 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: