Gene Regulatory Networks Inference using Bidirectional Encoder Representations from Transformers

dc.contributor.authorStefanou, Dimitrios
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerMercado, Rocío
dc.contributor.supervisorPolster, Annikka
dc.date.accessioned2025-09-10T13:00:26Z
dc.date.issued2024
dc.date.submitted
dc.description.abstractAlzheimers disease is characterised by complex molecular mechanisms that are only partially understood. This thesis leverages single-cell RNA sequencing data from the newly released ROSMAP dataset, using an equally new BERT framework, to uncover potential drivers of disease onset, progression or therapeutic targets. A pretrained transformer model (Geneformer) is finetuned to classify major cell types and attempt patient classification. Geneformer achieves robust classification of major cell types, identifying molecular signals within a restricted gene set. but does not generalise effectively for patient classification. Performance is compared on reduced and full datasets to examine resource trade-offs. Molecular markers and candidate genes through perturbation analysis are presented through in silico perturbation. Future work may integrate updated versions of Geneformer with expanded gene inclusion and deeper architecture. This approach contributes insights into determinants of Alzheimers disease.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310456
dc.language.isoeng
dc.relation.ispartofseriesCSE 24-193
dc.setspec.uppsokTechnology
dc.subjectData science, machine learning, bioinformatics, transformers, genomics, project, thesis
dc.titleGene Regulatory Networks Inference using Bidirectional Encoder Representations from Transformers
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeData science and AI (MPDSC), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 24-193 DS.pdf
Storlek:
5.68 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: