Chalmers Open Digital Repository
Välkommen till Chalmers öppna digitala arkiv!
Här hittar du:
- Studentarbeten utgivna på lärosätet, såväl kandidatarbeten som examensarbeten på grund- och masternivå
- Digitala specialsamlingar, som t ex Chalmers modellkammare
- Utvalda projektrapporter
Forskningspublikationer, rapporter och avhandlingar hittar du i research.chalmers.se
Enheter i Chalmers ODR
Välj en enhet för att se alla samlingar.
Visar 1 - 2 av 2
Senast inlagda
Post
Detection of sound from AVAS in urban environments
(2024) Demirci, Bircan; Chalmers tekniska högskola / Institutionen för arkitektur och samhällsbyggnadsteknik (ACE); Chalmers tekniska högskola / Institutionen för arkitektur och samhällsbyggnadsteknik (ACE); Forssén, Jens; Bolin, Karl
Functionality of AVAS (Acoustic Vehicle Alert System) faces challenges in urban
environments, where background noises may mask AVAS sounds. From a safety
perspective, designing AVAS sounds that effectively warn vulnerable road users
(without causing extensive environmental noise) is even more crucial in heavy vehicles
since they have longer braking distances, greater momentum, and more blind spots
than light vehicles. This study aims to contribute to the safety aspects of battery
electric trucks (BEV trucks) by exploring their detectability in urban areas and their
classification rate, which shows whether they can be distinguishable from cars.
In this regard, listening tests were conducted with 51 participants: eight distinct
vehicle sounds, five of which belong to a BEV heavy truck, one to an ICE (Internal
combustion engine) truck, one to a BEV passenger car, and one to an ICE passenger
car. Each vehicle sound was presented both at 10 and 20 km/h. In the first session
of the test, participants were tasked with classifying approaching vehicles as either
trucks or cars, without additional urban background noise (the equivalent levels
are about 45 dB(A)). During the second session, they were tasked with detecting
approaching vehicles amidst continuous urban background noise (the equivalent
levels are in the range between 57 and 62 dB(A)) and then classifying the detected ones.
The results revealed that in the first session of the test, where there was no additional
background noise, 50% of the vehicles were correctly classified within the safe zone.
The vast majority of the vehicles approaching at 10 km/h were classified within the
safe zone, while those approaching at 20 km/h were classified within the unsafe zone.
In the second session, with continuous urban background noise, 30% of the vehicles
were detected and then correctly classified within safe distances. Unlike the first
session, a large portion of the vehicles approaching at 20 km/h were detected and
then correctly classified within the safe zone, while those approaching at 10 km/h
were detected and then classified within the unsafe zone. While the ICE truck
outperformed at both speeds and in both sessions, the accuracy of the BEV truck
results varied depending on the session and vehicle speed. Moreover, the accuracy
rates of the tasks’ results were mainly affected by whether the AVAS sound was
in active mode or not, the modulation of the AVAS sound, and whether the tonal
components of the BEV truck were dominant or not. These findings may provide
insights into the current and future needs of designing AVAS sounds for electrified
trucks.
Post
Learning-Based Detection of Events in Eye-Tracking Data: An Investigation Into Small-Scale Models for Automotive Applications
(2024) Due, Martin; Chalmers tekniska högskola / Institutionen för matematiska vetenskaper; Ringh, Axel; Molin, Vincent; Zemblys, Raimondas
Detection of eye movement events in eye-tracking data is integral to various research
fields and commercial applications. Traditionally, the detection has been
accomplished either by hand or with threshold based detectors with the inherent
drawback that thresholds levels and other parameters had to be hand picked for
each scenario. In recent years machine learning methods have been employed for
eye movement event detection that do away with that requirement. However, these
models tend to be too large to run on limited resources in embedded applications,
particularly automotive ones. This thesis focuses on creating models that are smaller
but with retained performance. Five machine learning methods were evaluated and
hyperparameters were tuned to create well performing small models. Furthermore,
the usage of synthetic data for training was investigated, both as a supplement to
real data and as a sole source of training data. The study found that a Multilayer
Perceptron model (MLP) trained on a combination of real and synthetic data
struck the best balance between size and performance. Additionally, results show
that models trained purely on synthetic data also performed reasonably well. The
findings of this thesis suggest that small, efficient models can effectively detect eye
movement events, with potential applications in automotive contexts.
Post
Avfallsförordningen; ett ideal eller verklighet
(2024) Bergkvist, Malin; Sabel, Ebba; Chalmers tekniska högskola / Institutionen för arkitektur och samhällsbyggnadsteknik (ACE); Chalmers tekniska högskola / Institutionen för arkitektur och samhällsbyggnadsteknik (ACE); Gustafsson, Mathias Petter
Agenda 2030 presenterades den 1 januari år 2016 av FN:s och innehåller de gemensamma
målen för en hållbar utveckling. Byggsektorn står ansvarig för 22 procent av nationens totala
växthusgasutsläpp. Det är därmed av stor betydelse att förstå hur beslut och val som tas i
byggsektorn påverkar utvecklingen mot en hållbar byggsektor. I projekteringsskedet finns det
stora möjligheter och utvecklingspotential att göra val som minimerar byggandets
klimatpåverkan. Den nya versionen av Avfallsförordningen (SFS 2023:936) reglerar bygg- och
rivningsavfall i Sverige med syftet att främja ekologisk hållbarhet. Förordningen innebär
att krav ställs på byggföretagen, inklusive möjligheten till dispens från vissa lagkrav under
specifika omständigheter.
Syftet med examensarbetet är att undersöka och utreda vilka specifika omständigheter som
genererar dispens enligt avfallsförordningen SFS 2020:614 inom byggsektorn. Genom att
analysera och konkretisera dessa omständigheter ämnar arbetet att skapa insikter och kunskap
för framtida riktlinjer med hänsyn till att främja hållbart agerande. Undersökningsstrategi
utgår från en flermetodsforskning som ansats där dokumentstudier och semistrukturerade
intervjuer tillämpas som undersökningsmetoder.
Resultatet indikerar att omständigheterna som genererar dispens från Avfallsförordningen
SFS 2020:614 är unika för varje enskilt fall. Varje dispensansökan bedöms individuellt och en
skillnad som identifierats beror på byggprojektets geografiska plats. Det finns även brister
som genomsyrar hela byggsektorns värdekedja, där tillgång till resurser och kompetens hos
aktörerna påverkar sektorns hållbarhetsinsatser. Det finns behov av tydligare riktlinjer för att
styra aktörernas arbete med byggavfall. Detta har resulterat i den framtagna handlingsplanen
FRAMSTEG - Framtidens Samverkan och Tillvägagångssätt för hållbart byggande, vilket
syftar till att främja ekologisk hållbarhet.
Post
Analysis of GNSS signal measurement accuracy
(2024) Rachman Harfian, Alif; Chalmers tekniska högskola / Institutionen för rymd-, geo- och miljövetenskap; Chalmers University of Technology / Department of Space, Earth and Environment; Haas, Rüdiger; Bergstrand , Sten
eceiver-related errors significantly influence the accuracy of GNSS signal measure ments. One of these errors pertains to the antenna phase center correction. Several
antenna calibration techniques, such as robot calibration, can mitigate the impact
of such errors. However, there is a possibility that calibration corrections may not
completely eliminate the errors in the antenna phase center. To address this issue,
calibrated antenna phase center corrections were investigated by measuring GNSS
signal observations at four different stations, each tilted to various angles in specific
directions, involving up to six baseline length formations. This experiment was dis tinct from previous studies, which only involved one baseline length between two
different stations with antennas physically tilted towards each other. Observation
data from the four different stations were retrieved and processed using GipsyX
with the Precise Point Positioning (PPP) method, and Bernese with the single dif ference technique (DGNSS). Additionally, a laser tracker was utilized to measure the
station positions and baseline lengths, providing more precise measurements. The
phase residual error models were derived from L1, L2 and L3 frequency observations.
The error models indicate that all three frequency observations are influenced by er rors corresponding to antenna phase center corrections, with an error of -0.8867 mm
for L1, -1.5728 mm for L2, and -0.3901 mm for L3.
Post
Improving Transportation Efficiency: Cost Comparison Between Single Trailer and High- Capacity Transport in Container Road Freight
(2024) Zhu, Yixue; Li, Junyang; Chalmers tekniska högskola / Institutionen för teknikens ekonomi och organisation; Chalmers University of Technology / Department of Technology Management and Economics; Cardenas Barbosa, Ivan Dario; Von Corswant, Fredrik
This thesis examines the use of High-Capacity Transport (HCT) vehicles in container logistics, as well as the use of dry ports and last mile efficiency. The study focuses on comparing single and double trailer configurations, examining their respective advantages in terms of cost-effectiveness, operational efficiency, and environmental sustainability. Meanwhile dry ports, as key hubs for relieving congestion in seaports and streamlining the distribution process, focus on specific situations suitable for implementation. The thesis assesses the economic viability of HCT vehicles and dry ports in transport scenarios through a combination of literature review, case studies, and data analysis.
The results of the study show that the combination of HCT vehicles and strategically located dry ports can significantly reduce transport costs, improve supply chain efficiency, and support more sustainable logistics operations. The study provides insights into optimizing container transport for long-haul and last-mile movements, contributing to the development of more efficient and environmentally friendly freight transport solutions.