Dynamic construction of aglebraic closure and a coinductive proof of Hensel's lemma

Examensarbete för masterexamen

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12380/125001
Download file(s):
File Description SizeFormat 
125001.pdfFulltext913.4 kBAdobe PDFView/Open
Type: Examensarbete för masterexamen
Master Thesis
Title: Dynamic construction of aglebraic closure and a coinductive proof of Hensel's lemma
Authors: Mannaa, Bassel
Abstract: In this thesis we present a dynamic construction of the algebraic closure of a zero characteristic field implemented in the functional programming language Haskell based on Duval’s dynamic evaluation method. We also present a complete formalization of the ring of formal power series. Based on that we present a coinductive proof Hensel’s lemma. As an application we present an implementation of Newton algorithm for factorization of polynomials with power series coefficients.
Keywords: Datavetenskap (datalogi);Beräkningsmatematik;Computer Science;Computational Mathematics
Issue Date: 2010
Publisher: Chalmers tekniska högskola / Institutionen för data- och informationsteknik, Datavetenskap (Chalmers)
Chalmers University of Technology / Department of Computer Science and Engineering, Computing Science (Chalmers)
URI: https://hdl.handle.net/20.500.12380/125001
Collection:Examensarbeten för masterexamen // Master Theses



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.