Hierarchical Temporal Memory for Behavior Prediction

Examensarbete för masterexamen

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12380/163276
Download file(s):
File Description SizeFormat 
163276.pdfFulltext753.35 kBAdobe PDFView/Open
Type: Examensarbete för masterexamen
Master Thesis
Title: Hierarchical Temporal Memory for Behavior Prediction
Authors: Björkman, David
Abstract: This thesis is about researching and analyzing Hierarchical Temporal Memory, specifically the newly developed "HTM Cortical learning algorithms"[3] developed by Jeff Hawkins and the company Numenta. Two problems are addressed. Can this type of hierarchical memory system make an internal representation of simple data sequences at the input? And if so, does it take long to learn? Two C++ applications were developed in this thesis. The first program is used to analyze the algorithm, and the second program is used to visualize the internal states of the network. The results is very dependent of how the system is configured. If enough resources are available, the system can learn sequences, and it does not take long for the system to learn.
Keywords: Människa-datorinteraktion (interaktionsdesign);Informations- och kommunikationsteknik;Human Computer Interaction;Information & Communication Technology
Issue Date: 2012
Publisher: Chalmers tekniska högskola / Institutionen för tillämpad informationsteknologi (Chalmers)
Chalmers University of Technology / Department of Applied Information Technology (Chalmers)
Series/Report no.: Report - IT University of Göteborg, Chalmers University of Technology and the University of Göteborg
URI: https://hdl.handle.net/20.500.12380/163276
Collection:Examensarbeten för masterexamen // Master Theses

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.