Analytic Continuation of Electronic Green’s Functions from Imaginary to Real Time using Maximum Entropy

Examensarbete för masterexamen

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12380/211758
Download file(s):
File Description SizeFormat 
211758.pdfFulltext970.03 kBAdobe PDFView/Open
Type: Examensarbete för masterexamen
Master Thesis
Title: Analytic Continuation of Electronic Green’s Functions from Imaginary to Real Time using Maximum Entropy
Authors: schött, johan
Abstract: This thesis is mainly a computational work studying the analytical continuation of Green’s functions using the Maximum Entropy method. A strongly correlated electron system is described with the single-band Hubbard model and paramagnetic solutions are studied using Dynamic Mean Field Theory on a Bethe lattice. Continuous Time Quantum Monte Carlo is used as Impurity solver, for the infinite Anderson model at a finite temperature, to obtain the Matsubara single-particle Green’s function propagator. Both metallic and insulating spectral functions are obtained using the Maximum Entropy Method. General properties of the Maximum Entropy Method as an analytic continuation method from imaginary to real time are also discussed.
Keywords: Energi;Grundläggande vetenskaper;Hållbar utveckling;Innovation och entreprenörskap (nyttiggörande);Annan teknik;Energy;Basic Sciences;Sustainable Development;Innovation & Entrepreneurship;Other Engineering and Technologies
Issue Date: 2014
Publisher: Chalmers tekniska högskola / Institutionen för teknisk fysik
Chalmers University of Technology / Department of Applied Physics
URI: https://hdl.handle.net/20.500.12380/211758
Collection:Examensarbeten för masterexamen // Master Theses



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.