1D Modeling and Simulations of Soot Oxidation in Diesel Particulate Filters and Monoliths using GT-POWER
Ladda ner
Typ
Examensarbete för masterexamen
Master Thesis
Master Thesis
Program
Innovative and sustainable chemical engineering (MPISC), MSc
Publicerad
2016
Författare
Lerdmaleewong, Chanin
Luong, Staffan
Modellbyggare
Tidskriftstitel
ISSN
Volymtitel
Utgivare
Sammanfattning
Diesel particulate filter (DPF) is part of the exhaust aftertreatment system for diesel engines. The DPF’s main function is to trap particulate matter (soot) from the exhaust stream. The trapped soot is removed by regeneration of the filter. The regeneration process involves soot oxidation via oxygen and nitrogen dioxide. Simulations on kinetics and pressure drop are widely used in the assessment of the DPF. In this work detailed kinetic models of soot oxidation (by oxygen) were investigated and implemented in a flow-through monolith model and also in a DPF model using GT-POWER. The detailed kinetic models and data origins from previously published data. The DPF model consists of a number of interrelated sub-models soot oxidation by NO2 , NO oxidation and pressure drop. These sub-models were developed by using semi-steady state and transient engine data on a catalyzed DPF. Kinetics and pressure drop analysis were found to be the key in finding parameters for the models. The implementation of these models into GT-POWER required some special techniques due to rigid built-in model structure. The detailed kinetics was adequate to predict the low temperature experiment, in general, the detailed kinetic model was able to reduce the residual by approximately 25% compared to global kinetics model.
Beskrivning
Ämne/nyckelord
Energi , Transport , Hållbar utveckling , Farkostteknik , Termisk energiteknik , Kemisk energiteknik , Strömningsmekanik , Kemiteknik , Annan materialteknik , Energy , Transport , Sustainable Development , Vehicle Engineering , Thermal energy engineering , Chemical energy engineering , Fluid mechanics , Chemical Engineering , Other Materials Engineering