Neural networks for collision avoidance - Preliminary investigations of training neural networks using deep Q-learning and genetic algorithms for active safety functions

Examensarbete för masterexamen

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12380/244867
Download file(s):
File Description SizeFormat 
244867.pdfFulltext2.23 MBAdobe PDFView/Open
Type: Examensarbete för masterexamen
Master Thesis
Title: Neural networks for collision avoidance - Preliminary investigations of training neural networks using deep Q-learning and genetic algorithms for active safety functions
Authors: Leiditz Thorsson, Jonathan
Steinert, Olof
Keywords: Elektroteknik och elektronik;Electrical Engineering, Electronic Engineering, Information Engineering
Issue Date: 2016
Publisher: Chalmers tekniska högskola / Institutionen för signaler och system
Chalmers University of Technology / Department of Signals and Systems
Series/Report no.: Ex - Institutionen för signaler och system, Chalmers tekniska högskola : EX076/2016
URI: https://hdl.handle.net/20.500.12380/244867
Collection:Examensarbeten för masterexamen // Master Theses



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.