Machine learning for vehicle concept candidate population & verification

Examensarbete för masterexamen

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12380/250510
Download file(s):
File Description SizeFormat 
250510.pdfFulltext1.67 MBAdobe PDFView/Open
Type: Examensarbete för masterexamen
Master Thesis
Title: Machine learning for vehicle concept candidate population & verification
Authors: Grevholm, Björn
Abstract: The aim of this M.Sc. thesis is to evaluate the potential of using machine learning to support concept phase decisions to balance the thermal properties of an automobile. With the use of computer scripts, the relevant measurement data is extracted from repositories and is used to train an artificial neural network which can identify the importance of the different parameters that are involved in tuning the vehicle thermal attributes. After data for several car models has been used to train Machine Learning (ML) tools, this configuration used in predicting parameters affecting engine under hood thermal behaviour. A neural network based ranking procedure which may make it possible to reduce the order of concept decision space is also proposed. After several vehicle families gone through this prediction phase, a clustering of vehicle classes may allow for prediction and optimisation of new families, if errors due to assumptions and underlying mathematics are quantified. The project has the added benefit of allowing Volvo Car Corporation (VCC) to reuse the large amount of data which are seldom used after the initial project delivery date. Measurements collected in VCC’s wind tunnels are the main source of data for this thesis but the open-source script based method can be used on other type of data from other disciplines. A possible outcome of the thesis might be recommendation for updated procedures in creating and storing data to easier integration into machine learning based investigations.
Keywords: Produktion;Innovation och entreprenörskap (nyttiggörande);Annan teknik;Production;Innovation & Entrepreneurship;Other Engineering and Technologies
Issue Date: 2017
Publisher: Chalmers tekniska högskola / Institutionen för tillämpad mekanik
Chalmers University of Technology / Department of Applied Mechanics
Series/Report no.: Diploma work - Department of Applied Mechanics, Chalmers University of Technology, Göteborg, Sweden : 2017:39
URI: https://hdl.handle.net/20.500.12380/250510
Collection:Examensarbeten för masterexamen // Master Theses



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.