Real-time path tracing of small scenes using WebGL

Examensarbete för masterexamen

Please use this identifier to cite or link to this item:
Download file(s):
File Description SizeFormat 
255145.pdfFulltext1.02 MBAdobe PDFView/Open
Type: Examensarbete för masterexamen
Master Thesis
Title: Real-time path tracing of small scenes using WebGL
Authors: Nilsson, Martin
Ottedag, Alma
Abstract: Monte Carlo path tracing is becoming increasingly viable as a method for rendering global illumination in real-time. We explored the potential of using path-tracing and WebGL to rendering real-time 3D graphics in a web browser. The project focused on rendering small scenes where objects are dynamically translated, rotated, and scaled. We examined the performance of various acceleration data structures (ADS) including 3D grids, irregular grids, and bounding volume hierarchies. To reduce the noise inherent in path-traced images, we separated the lighting into several lighting terms and applied an À-Trous wavelet filter on each term. We explored both the results of splitting the direct and indirect lighting terms and splitting the glossy and diffuse terms. We also applied the surface albedo in a post-processing step to better retain texture details. On small scenes, we were able to trace 720x540 pixel images at interactive framerates, i.e. above 10hz, at one sample per pixel with a maximum path depth of five. Using per-object bounding volume hierarchies, we can render dynamically changing scenes, e.g. moving objects, at interactive framerates. The noise reduction filter executes in less than 10 milliseconds and is successful at removing noise but over-blurs some image details and introduces some artefacts. We conclude that while real-time path tracing is possible WebGL, there are several caveats of the current version of the WebGL library that makes some state-of-the-art optimisation techniques impractical. For future work, we suggest several approaches for improving the path tracer. For instance, extending the noise reduction filter with temporal accumulation and anti-aliasing, and optimising the encoding of triangles and ADS nodes.
Keywords: Informations- och kommunikationsteknik;Data- och informationsvetenskap;Information & Communication Technology;Computer and Information Science
Issue Date: 2018
Publisher: Chalmers tekniska högskola / Institutionen för data- och informationsteknik (Chalmers)
Chalmers University of Technology / Department of Computer Science and Engineering (Chalmers)
Collection:Examensarbeten för masterexamen // Master Theses

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.