A deep learning based tracking framework for passenger monitoring

Examensarbete för masterexamen

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12380/255747
Download file(s):
File Description SizeFormat 
255747.pdfFulltext15.83 MBAdobe PDFView/Open
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGranqvist, Filip
dc.contributor.authorHolmberg, Oskar
dc.contributor.departmentChalmers tekniska högskola / Institutionen för elektrotekniksv
dc.contributor.departmentChalmers University of Technology / Department of Electrical Engineeringen
dc.date.accessioned2019-07-03T14:51:33Z-
dc.date.available2019-07-03T14:51:33Z-
dc.date.issued2018
dc.identifier.urihttps://hdl.handle.net/20.500.12380/255747-
dc.language.isoeng
dc.relation.ispartofseriesExamensarbete - Institutionen för elektroteknik, Chalmers tekniska högskola : EX058/2018
dc.setspec.uppsokTechnology
dc.subjectElektroteknik och elektronik
dc.subjectElectrical Engineering, Electronic Engineering, Information Engineering
dc.titleA deep learning based tracking framework for passenger monitoring
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster Thesisen
dc.type.uppsokH
Collection:Examensarbeten för masterexamen // Master Theses



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.