Reading Key Figures from Annual Reports

Examensarbete för masterexamen

Please use this identifier to cite or link to this item:
Download file(s):
File Description SizeFormat 
Master_thesis_Sara_Nordin_Hällgren_210604.pdfReading Key Figures from Annual Reports2.51 MBAdobe PDFThumbnail
Bibliographical item details
Type: Examensarbete för masterexamen
Title: Reading Key Figures from Annual Reports
Authors: Nordin Hällgren, Sara
Abstract: This thesis presents methods for extracting key figures from scanned annual reports. A two step approach is suggested, where a classifier locates the desired section and a separate algorithm then proceeds to identify and extract key figures within this context. Optical Character Recognition is carried out using Tesseract 4.1.1. The data consists of 280 annual reports submitted by Swedish companies, for which page labels as well as four different key figures are annotated. For the page classification task, a Random Forest classifier trained on TF-IDF embedded pages is found to achieve a test accuracy of 99.6%. To locate and extract a given key figure, it is found that an approximate string matching algorithm performs best, achieving an extraction accuracy of 92.9% on training documents and 89.6% on test documents. Accurate extraction is hampered by noise, so different image processing techniques are explored. The RCC filter is seen to improve extraction accuracy from 73.8% to 83.8% on a subset of difficult documents. Further improvements could be made by using an image processing technique based on deep learning.
Keywords: Annual reports, extract information, reading from tables, optical character recognition, Tesseract, image processing, remove noise, binary images, scanned documents, page classification
Issue Date: 2021
Publisher: Chalmers tekniska högskola / Institutionen för matematiska vetenskaper
Collection:Examensarbeten för masterexamen // Master Theses

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.