Genetically generated bionic driver models for autonomous road vehicles

Examensarbete för masterexamen

Använd denna länk för att citera eller länka till detta dokument: https://hdl.handle.net/20.500.12380/304399
Ladda ner:
Fil Beskrivning StorlekFormat 
2021-80 Shishir Gurushanthappa & Olle Lindgren.pdfMaster Thesis1.96 MBAdobe PDFVisa
Bibliografiska detaljer
FältVärde
Typ: Examensarbete för masterexamen
Titel: Genetically generated bionic driver models for autonomous road vehicles
Författare: Gurushanthappa, Shishir
Lindgren, Olle
Sammanfattning: For autonomous road vehicles, control is often divided into longitudinal and lateral control. This thesis focuses on lateral control driver models derived from a cognitive perspective. A genetic algorithm is used to generate driver models expressed in a domain-specific language. The project focuses on isolating perceptual cues. The objective function for the genetic algorithm is computed as the difference between the estimated steering angles and the observed steering angles in the vehicle. The recordings were captured from a Volvo XC90 driving a single scenario with an S-shaped test track at different speeds, and with different drivers. The resulting driver models are within 1-2 degrees of the recorded steering angles, and more significantly, the DSL sentences are very similar regardless of driver or speed, and stable between different runs. The project’s results show that the implementation of the genetically generated driver models is possible for lateral control. This genetic algorithm serves as a platform for the future inclusion of external factors affecting the dynamics of the vehicle. The identified model and parameters can be tested for representing a real-world driving case. Keywords:
Nyckelord: autonomous driving;domain-specific language;genetic programming;genetic algorithm;driver models;stochastic optimization;autonomous road vehicles
Utgivningsdatum: 2021
Utgivare: Chalmers tekniska högskola / Institutionen för mekanik och maritima vetenskaper
Serie/rapport nr.: 2021:80
URI: https://hdl.handle.net/20.500.12380/304399
Samling:Examensarbeten för masterexamen // Master Theses



Materialet i Chalmers öppna arkiv är upphovsrättsligt skyddat och får ej användas i kommersiellt syfte!