Constructing a Context-aware Recommender System with Web Sessions
dc.contributor.author | Bramstång, Albin | |
dc.contributor.author | Jin, Yanling | |
dc.contributor.department | Chalmers tekniska högskola / Institutionen för data- och informationsteknik (Chalmers) | sv |
dc.contributor.department | Chalmers University of Technology / Department of Computer Science and Engineering (Chalmers) | en |
dc.date.accessioned | 2019-07-03T13:44:02Z | |
dc.date.available | 2019-07-03T13:44:02Z | |
dc.date.issued | 2015 | |
dc.description.abstract | During the last decade, the importance of recommender systems has been increasing to the point that the success of many well-known service providers depends on these technologies. Recommender systems can assist people in their decision making process by anticipating preferences. However, common recommender algorithms often suffer from lack of explicit feedback and the \cold start" problem. This thesis investigates an approach of using implicit data only, to extract users' intent for fashion e-commerce in cold start situations. Markov Decision Processes (MDPs) are used on web session data to extract topic models. This thesis also explores how well the topic models can capture users intent and whether they can be used to produce good recommendations. The results show that this approach was able to accurately identify sessions topics, and in most cases the topics could successfully be translated to product recommendations. | |
dc.identifier.uri | https://hdl.handle.net/20.500.12380/219471 | |
dc.language.iso | eng | |
dc.setspec.uppsok | Technology | |
dc.subject | Informations- och kommunikationsteknik | |
dc.subject | Data- och informationsvetenskap | |
dc.subject | Information & Communication Technology | |
dc.subject | Computer and Information Science | |
dc.title | Constructing a Context-aware Recommender System with Web Sessions | |
dc.type.degree | Examensarbete för masterexamen | sv |
dc.type.degree | Master Thesis | en |
dc.type.uppsok | H | |
local.programme | Computer science – algorithms, languages and logic (MPALG), MSc |
Ladda ner
Original bundle
1 - 1 av 1
Hämtar...
- Namn:
- 219471.pdf
- Storlek:
- 1.02 MB
- Format:
- Adobe Portable Document Format
- Beskrivning:
- Fulltext