Beyond Galton-Watson Processes: Forests, Duals, and Ranks
dc.contributor.author | Jagers, Jonas | |
dc.contributor.department | Chalmers tekniska högskola / Institutionen för matematiska vetenskaper | sv |
dc.contributor.department | Chalmers University of Technology / Department of Mathematical Sciences | en |
dc.date.accessioned | 2019-07-03T14:38:24Z | |
dc.date.available | 2019-07-03T14:38:24Z | |
dc.date.issued | 2017 | |
dc.description.abstract | A random forest is a random graph (V,E) with a set of vertices V = N20 and a set of edges E = {ev, v 2 V } satisfying the following property: if v = (x, t + 1), then ev = (v, v0), where v0 = (x0, t) and x0 = 't(x) is an increasing stochastic process in x. For a given forest, there is a unique way to draw a dual forest. These forests can be used as a graphical representation of discrete time reproduction processes forward and backward in time. They also serve to introduce a new concept, ranked Galton-Watson processes, where individual reproduction depends on the position in the population. A main result is that the dual process to a Galton-Watson process in varying environments with immigration is a Galton-Watson process in varying environments if and only if the reproduction and immigration laws of the first process are linear fractional. | |
dc.identifier.uri | https://hdl.handle.net/20.500.12380/252196 | |
dc.language.iso | eng | |
dc.setspec.uppsok | PhysicsChemistryMaths | |
dc.subject | Matematik | |
dc.subject | Mathematics | |
dc.title | Beyond Galton-Watson Processes: Forests, Duals, and Ranks | |
dc.type.degree | Examensarbete för masterexamen | sv |
dc.type.degree | Master Thesis | en |
dc.type.uppsok | H | |
local.programme | Engineering mathematics and computational science (MPENM), MSc |
Ladda ner
Original bundle
1 - 1 av 1
Hämtar...
- Namn:
- 252196.pdf
- Storlek:
- 572.71 KB
- Format:
- Adobe Portable Document Format
- Beskrivning:
- Fulltext