Identification of Loads Based on Historical Data

dc.contributor.authorLin, Meixi
dc.contributor.authorSupakkeittikul, Pirapon
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.departmentChalmers University of Technology / Department of Computer Science and Engineeringen
dc.contributor.examinerAxelson-Fisk, Marina
dc.contributor.supervisorDamaschke, Peter
dc.date.accessioned2026-01-23T14:38:49Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractTo tackle the forthcoming electricity grid tension in Gothenburg, Sweden, this thesis introduces a two-step machine learning approach for managing electricity demand. Initially, consumers are grouped using K-Means clustering according to their past patterns of usage in order to identify categories with the most fluctuating behaviour. Subsequently, several Long Short-Term Memory (LSTMs)—Vanilla, Stacked, Bidirectional, and CNN-LSTM—are trained for predicting electricity demand for such high-impact consumer groups in response to real-time, varying price signals. These models are evaluated using mean absolute error (MAE), root mean square error (RMSE), and loss measures. Among these examined architectures, CNN-LSTM exhibits the most consistent and stable performance across test and prediction datasets. This approach minimises the data and computation needed for deep learning but allows for more customised forecasting. The proposed solution provides a resourceefficient and scalable solution for energy suppliers who wish to monitor changes in demand in response to price changes.
dc.identifier.coursecodeDATX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/310942
dc.language.isoeng
dc.setspec.uppsokTechnology
dc.subjectElectricity demand forecasting
dc.subjectcustomer segmentation
dc.subjectK-Means clustering
dc.subjectLSTM
dc.subjectprice signals
dc.subjectdemand response
dc.titleIdentification of Loads Based on Historical Data
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeData science and AI (MPDSC), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 25-158 ML PS.pdf
Storlek:
8.2 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: