Online Learning for Energy Efficient Navigation using Contextual Information

dc.contributor.authorYUNATCI, YONCA
dc.contributor.authorBATIKAN UNAL, AHMET
dc.contributor.departmentChalmers tekniska högskola / Institutionen för data och informationstekniksv
dc.contributor.examinerHaghir Chehreghani, Morteza
dc.contributor.supervisorÅkerblom, Niklas
dc.date.accessioned2020-07-08T10:26:16Z
dc.date.available2020-07-08T10:26:16Z
dc.date.issued2020sv
dc.date.submitted2020
dc.description.abstractAccurately predicting the energy consumption of road segments is an important topic in electric vehicles that might alleviate the range concerns if it is addressed properly. We employ a contextual combinatorial multi-armed bandit framework to learn the unknown parameters of an energy consumption model which is necessary for energy-efficient navigation. Four different agents: Thompson Sampling, Disjoint LinUCB, Hybrid LinUCB, and greedy algorithms are implemented to observe their performance. All experiments are conducted on the output of a Luxembourg SUMO traffic simulation. The main finding of this research is that contextual information such as speed and acceleration data contributes to better learning of parameters. Although the contextual combinatorial algorithms seem promising for addressing the energy-efficient shortest path problem, none of the agents achieve zero regret consistently which indicates that further improvements are necessary to obtain the desired results.sv
dc.identifier.coursecodeDATX05sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/301396
dc.language.isoengsv
dc.setspec.uppsokTechnology
dc.subjectContextual combinatorial multi-armed banditsv
dc.subjectonline learningsv
dc.subjectelectric vehiclessv
dc.subjectenergy consumption predictionsv
dc.subjectcomputer sciencesv
dc.titleOnline Learning for Energy Efficient Navigation using Contextual Informationsv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
CSE 20-51 Batikan Unal Yunatci.pdf
Storlek:
7.22 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.14 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: